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The role of conical intersections in the internal conversion (S1 f S0) of photoexcited ketene (H2CCO) is
analyzed. The energy-minimized projection of a portion of the S1(1A′′)-S0(1A′) seam of the conical intersection
near the minimum energy-crossing point is studied as a function of the key internal coordinatesR(C-C) and
∠CCO. The characteristic parameters of the conical intersection points are used, to identify the two modes
that evince the conical nature of the intersection, to determine the energy and singular part of the derivative
coupling near the conical intersection, and to construct a transformation to diabatic states that rigorously
removes the singularity in the derivative coupling. From the Franck-Condon region of the S0 f S1 excitation,
barrierless paths were identified on S1 leading toRe(Ã1A′′), the equilibrium geometry of S1 ketene, and to
Rmex, the minimum energy point on the S1-S0 seam of conical intersection. Following internal conversion
onto S0 nearRmex, the barrierless paths leading toRe(X̃1A1), the equilibrium geometry of ground-state ketene,
were found.

I. Introduction

The photodissociation of ketene

has been the object of considerable experimental interest.1-3

This interest is due in part to the opportunity to observe a
specifically quantum mechanical effect, the stepwise increase
in the rate constant with increasing energy, in the unimolecular
decomposition of an optically prepared reactant.1 In an attempt
to reproduce the detailed steplike structure observed in the
experiments,1 the microcanonical dissociation rate constant for
vibrationally excited ketene on T1 was determined.4 These
calculations, which utilized a novel method5 for calculating the
cumulative reaction probability, did not prove successful. This
has motivated theoretical studies of the factors governing the
microcanonical analysis,6 including the nonadiabatic processes
that precede dissociation on T1.7

We will consider the electronic structure aspects of the
internal conversion, S1 f S0, focusing on the S1-S0 seam of
conical intersection, likely the key region for the internal
conversion. Knowledge of the energetics and interstate couplings
in the vicinity of the seam of conical intersection is essential
for a reliable treatment of the internal conversion. The precise
determination of these quantities represents the most significant
contribution of this work. The S1 f S0 internal conversion has
been considered previously.7 The present investigation extends
and complements that study, providing a more precise picture
of the nonadiabatic interactions in the vicinity of the seam of
conical intersection. These electronic structure data can be used
to describe the dynamics of the internal conversion. Previ-
ously,11,12ab initio electronic structure data concerning conical
intersections have been incorporated into the description of
nonadiabatic dynamics. The present approach, by exploiting

recent methodological and formal advances in the description
of conical intersections8-10 that emphasize information obtained
on the seam of conical intersection itself, gains important
computational advantages when compared with previous tech-
niques for generating these data. Demonstrating the utility of
these generally applicable techniques for describing conical
intersections in polyatomic molecules (with more than three
atoms) is a second key aspect of this work.

Here the energy minimized projection of the seam of conical
intersection is determined in the region of the minimum energy
point on the seam. In the vicinity of this portion of the seam,
the adiabatic energies, EI(R), and the derivative coupling,
f τ

IJ(R) ) 〈ΨI(r ;R)|(∂/∂τ)ΨJ(r ;R)〉r whereΨI(r ;R) is an adia-
batic electronic state andτ is an internal coordinate, are
determined and an approximate diabatic representation,
ΨI

d(r ;R), which rigorously removes the singularity in the
derivative coupling, is developed. The complete elimination of
the singularity in the derivative coupling at the conical intersec-
tion is essential if the diabatic basis is to be of practical
computational value. These computed quantities are compared
with the analogous results deduced from the characteristic
parameters8 of a point of conical intersection. The characteristic
parameters enable, identification of the two modes that evince
the conical nature of the intersection, determination of the energy
and singular part of the derivative coupling near the conical
intersection, and computation of a transformation to diabatic
states that rigorously removes the singularity in the derivative
coupling. These calculations are an essential prerequisite to
developing coupled potential energy surfaces to describe the
internal conversion and represent, to our knowledge, the first
time a seam of conical intersection has been described at this
level of detail in a molecule of this size.

Section II outlines the electronic structure treatment. Section
III presents the results of the calculations, principally the locus
of the seam of conical intersection, and the analysis of that seam
based on the characteristic parameters. Also presented are the
energetics along pathways leading to the seam of conical
intersection and the possible outcomes of a conical intersection* Supported in part by DOE-BES Grant DE-FG02-91ER14189.

H2CCO(S0 ) X1A1) + hν f H2CCO(S1 ) 1A′′) f H2CCO

(S0) f H2CCO(T1 ) 3A′′) f 3CH2 + CO(X1Σ+) (1)
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induced internal conversion. The detailed representation of the
seam of conical intersection and the local diabatic basis in terms
of the characteristic parameters is presented in the Appendix.
Section IV summarizes and discusses directions for future
investigations.

II. Theoretical Approach

A. Electronic Structure Treatment. The electronic structure
calculations reported in this work were carried out inC1

symmetry for the 1,21A states. Although important portions of
the seam of conical intersection considered here haveCs

symmetry (all atoms coplanar, Figure 1), aC1 symmetry
treatment is required to describe the conical nature of the
intersection. In this work,Cs symmetry will refer to configura-
tions with all atoms coplanar, although noncoplanarCs sym-
metry configurations with two equivalent hydrogens also exist.

Each adiabatic wave function is expanded asΨI(r ;R) )
∑R)1

NCSF
cR

I (R)ψR(r ;R) where thecI(R) satisfy [H(R) - EI(R)]cI-
(R) ) 0 andH(R) is the electronic Hamiltonian matrix in the
ψR, configuration state function (CSF),13 basis. TheΨI(r ;R)
were approximated by second-order configuration interaction
(SOCI)13 wave functionsslinear combinations of all CSFs
arising from zero-, one-, and two-electron excitations from the
active orbitals to all the virtual orbitals using the following
partitioning of the molecular orbitals, [1a-4a; 8]{5a-12a; 14},
or in Cs symmetry [1a′-4a′; 8] {5a′-10a′, 1a′′-2a′′ ;14}. Here
the square brackets [ ] denote the core orbitals, the 1s orbital of
the carbons and of the oxygen and the 2s orbital of oxygen,
kept fully occupied in the SOCI expansion; the curly brackets
{ } denote the active orbitals; and the number of electrons in
the corresponding molecular orbital set follows the semicolon.
In the ketene region the ground X˜ 1A1 state is dominated by the
closed shell configuration{5a′-9a′, 1a′′-2a′′; 14} and theπ
f σ* excitation, 2a′′ f 10a′, leads to the A˜ 1A′′ state.

The molecular orbitals were determined from a complete
active space (CAS)14 state-averaged multiconfigurational self-
consistent field (SA-MCSCF)15 procedure. To facilitate con-
vergence of the SA-MCSCF procedure, the core and active
spaces were redefined, for the orbital optimizations only, using
Cs symmetry notation, as [1a′-7a′]14 {8a′-10a′, 1a′′-2a′′}8.
With an eye toward photochemical processes involving S2, in
the SA-MCSCF procedure three1A states were averaged with
weights 0.51, 0.5, and 0.49. Standard Dunning-Huzinaga
double-ú plus polarization (DZP) basis16 sets, C[9s5p1d]/
(4s2p1d), O[9s5p1d]/(4s2p1d), and H[4s1p]/(2s1p), were used,
yielding a SOCI treatment consisting of 666 450 CSFs.

This SOCI expansion excludes the oxygen 2s correlation. As
shown below, it is adequate for this treatment, which focuses
on the near ketene region, where the effects of the differential

oxygen 2s correlation are limited. The sequel to this work will
consider S0 and S1 over a more extended range of nuclear
coordinates. That treatment will include the oxygen 2s correla-
tion and a larger contracted Gaussian basis set.

All points on the 11A-21A surface of the conical intersection
are degenerate to<1 cm-1 and were determined at the SOCI
level using an analytic gradient driven algorithm,17 in which
some geometrical parameters are constrained and the rest
optimized to minimize the energy at the crossing. Unless
otherwise noted, energy minimizationswhich need not preserve
Cs symmetryswas achieved through the use of a quasi-second-
order procedure described previously.17,18

III. Results and Discussion

A. Comparison with Previous Results.The equilibrium
geometry of the X˜ 1A1 state,Re(X̃1A1), which hasC2V symmetry
and that of the A˜ 1A′′ state which has onlyCs symmetry,
Re(Ã1A′′), are reported, in the first two rows, in Table 1. See
also Figure 1. ForRe(X̃1A1), Re(C-O) ) 1.165(1.160) Å,Re-
(C-C) ) 1.322(1.312) Å,Re(C-H) ) 1.079(1.076) Å, and∠e-
HCH ) 121.7°(121.8°), in good accord with very high level ab
initio results given parenthetically.19 For Re(Ã1A′′), Re(C-O)
) 1.194(1.194) Å,Re(C-C) ) 1.440(1.426) Å, and∠eCCO)
128.8° (130.6°) in good agreement with previous equations of
motion coupled with cluster singles and doubles (EOM-CCSD)
determination7 again given parenthetically. ComparingRe(X̃1A1)
andRe(Ã1A′′) shows that at least∠CCO andR(C-C) must be
considered in any model of the internal conversion. On the other
hand, for CO(X1Σ+), Re(C-O) ) 1.1283 Å,20 and for CH2-
(1A′), Re(C-H) ) 1.08 Å and∠eHCH ) 102.1°,21 suggesting
that at least the C-O and C-H bond distances will not be
crucial to the dynamics.

The computed vertical excitation energy of ketene,
E21A(Re(X̃1A1)) - E11A(Re(X̃1A1)), is 4.05 eV, while the
adiabatic excitation energy,E21A(Re(Ã1A′′)) - E11A(Re(X̃1A1)),
is 2.664 eV. These results are in satisfactory accord with the
vertical (adiabatic) excitation energy, 3.92(2.73), 3.98(2.81), and
3.56(2.44) eV, obtained at the EOM-CCSD/6-31G(d,p), EOM-
CCSD/PVTZ′, and CASPT222/6-31G(d,p), levels respectively.
See ref 7 for computational details. The adiabatic excitation
energy is also in good accord with the experimental upper bound
T0(1A′′) < 2.64 eV.23 In this work, all energies will be reported
relative toE21A(Re(Ã1A′′)) ) -152.007 819 0 au. Distances will
be expressed in a0 unless otherwise noted.

Rmex, the minimum energy point on the 11A - 21A surface
of conical intersection in the near ketene region, is given in
Table 1. AtRmex, R(C-O) ) 1.189(1.215) Å,R(C-C) ) 1.538-
(1.528) Å, ∠CCO ) 116.2° (115.8°), and E11A(Rmex) )
E21A(Rmex)tEx(Rmex) ) 0.21(0.22) eV in good accord with the
results of ref 7 given parenthetically.

The above comparisons support the reliability of the present
approach. Further comparingRmex, Re(Ã1A′′), and Re(X̃1A1)
confirms thatR(C-C) and ∠CCO must be included in any
description of the internal conversion.

We now consider the qualitative or mechanistic description
of the internal conversion. In successive subsections, we consider
(i) the locus of the seam of conical intersection, (ii) a description
of the energetics and interstate couplings in the adiabatic and
diabatic bases in the vicinity of the conical intersection seam,
(iii) the initial motion on S1 following (vertical) excitation from
S0 and the accessibility of the seam of conical intersection, and
(iv) the motion on S0 following internal conversion. These data
represent an essential first step in constructing a reduced
dimensionality model of the internal conversion. We begin by

Figure 1. Planar ketene with atomic labeling as in the text.
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considering the locus of the seam of conical intersection, in
terms of the essential nuclear coordinatesR(C-C) and∠CCO.

B. Seam of Conical Intersection.(i) Symmetry Consider-
ations.For a general polyatomic molecule, the seam of conical
intersection may have dimensionNint - 2, whereNint ) 3N -
6 andN is the number of atoms. Here then the seam may have
dimension 7. In the region under consideration, for planar
structures, the 11A and 21A states have1A′ and1A′′ symmetry.
For these planar structures, there areNint,a′ ) 7(Nint,a′′ ) 2)
internal modes of a′ (a′′) symmetry so that restricted to the planar
structures the intersection seam has dimensionNint,a′ - 1 ) 6.
These intersections are not conical inCs symmetry since the
1A′ and1A′′ states are not coupled by purely a′ modes. These
surfaces intersect conically in the full coordinate space. The
conical topology exists in a space of dimension 2 consisting,
for Cs structures, of one a′ mode and one a′′ mode. Finally
observe that since forCs structures the seven internal directions
orthogonal to the seam consist of six a′ modes and one a′′ mode,
theCs portion of the seam of conical intersection continuously
connects with a no-symmetry portion.

ii. Intersecting Seams.Recently, an unexpected locus of points
of conical intersection has been found in MH2

24-26 molecules.
For these molecules, the seam of conical intersection consists
of two branches, an accidental symmetry-allowed (C2V) branch
(e.g.,2S+1A1 - 2S+1B2) and an accidental same symmetry (Cs)

branch (e.g., 12S+1A′ - 22S+1A′). These branches in turn intersect
at a single point withC2V symmetry.9 Related confluences have
been found in the 22E′ state of Li327 and of Na3.28 The seam
described below contains both accidental symmetry-allowed and
same symmetry portions. Thus, the question naturally arises as
to whether the locus reported here represents a single isolated
seam or contains portions of two branches that intersect. To
distinquish between these alternatives, the magnitude oftIJ(Rx)
≡ gIJ(Rx) × hIJ(Rx), will be monitored where

I ) 11A and J ) 21A. tIJ(Rx) ) 0 whenRx is located at the
intersection of two (or more) seams of conical intersection.29

iii. Numerical Results.The following analysis considers
displacements alongR(C-C) and ∠CCO from Rmex. These
displacements preserveCs symmetry; however, the energy
minimization need not. In this region for coplanar geometries,
the seam of conical intersection is accidental but symmetry-
allowed and either∠CCO orR(C-C) can be used as the seam
parameter,â; that is, Rx becomesRx[â], with the remaining

TABLE 1: Energetics from SOCI Wave Functions

∠CCO R(CO) R(CC) R(C2H1) R(CH2) ∠HCH ∠H1CC ∠H1CCO ∠H2CC E(eV) gxhc

1A′′
180 2.201 2.498 2.040 2.040 121.7 119.4 1.386a

128.8 2.256 2.721 2.041 2.053 120.5 119.4 0a

11A-21A
116.2 2.247 2.906 2.053 2.047 120.1 118.9 0.1 121.0 0.206b 0.247(1)

118.7 2.241 2.960 2.054 2.053 126.3 123.7 0.4 123.7 0.294b

119.2 2.241 2.955 2.068 2.052 124.4 109.1 0.8 109.1 0.325b 0.256(2)

11A-21A R(C-C) Constrained
104.2 2.331 2.35 2.057 2.064 115.6 122.6 27.3 120.1 2.273 0.174
106.0 2.306 2.45 2.057 2.061 116.0 121.2 21.4 119.4 1.533 0.191
108.0 2.289 2.55 2.058 2.058 116.2 120.2 16.7 119.2 0.977 0.204
109.0 2.284 2.60 2.058 2.057 116.4 119.9 14.7 119.4 0.763 0.208(3)

110.0 2.279 2.650 2.058 2.056 116.7 119.7 12.8 119.7 0.581 0.214
111.0 2.272 2.700 2.057 2.055 117.1 119.5 11.0 120.0 0.442 0.227
111.9 2.267 2.75 2.057 2.053 117.6 119.4 8.7 120.7 0.341 0.233
112.0 2.260 2.80 2.056 2.053 118.0 119.5 1.8 122.5 0.274 0.202(4)

116.0 2.240 2.9 2.054 2.047 120.0 118.9 0 121.1 0.206 0.246
120.0 2.225 3.00 2.051 2.043 122.2 118.0 0.2 119.8 0.252 0.283(5)

123.7 2.230 3.1 2.048 2.039 124.6 117.1 0.1 118.3 0.375 0.306
125.3 2.223 3.15 2.046 2.037 126.1 116.3 0 117.6 0.473 0.307
126.5 2.220 3.2 2.045 2.035 127.3 115.7 0 117.0 0.584 0.311
128.3 2.205 3.3 2.042 2.035 129.7 113.5 1.0 116.7 0.835 0.340
129.4 2.193 3.40 2.041 2.032 132.0 113.2 0 114.8 1.104 0.340(6)

129.9 2.189 3.500 2.040 2.031 134.3 112.1 0.1 113.6 1.337 0.354

11A-21A ∠CCO Constrained
97.2 2.340 2.534 2.023 2.026 120.4 123.5 0 116.1 1.672 0.0847

100 2.326 2.574 2.024 2.032 120.7 121.3 0 118.0 1.283 0.0861
102.5 2.313 2.615 2.027 2.036 121.1 119.4 0 119.5 0.971 0.0982
105 2.304 2.664 2.032 2.040 121.5 117.8 0 120.7 0.703 0.118
108 2.291 2.725 2.039 2.043 121.4 116.9 0 121.7 0.445 0.171
110 2.271 2.769 2.044 2.045 121.0 116.9 0 122.1 0.333 0.176
112 2.268 2.814 2.048 2.046 120.7 117.3 0.2 121.9 0.260 0.198
115 2.252 2.880 2.052 2.047 120.4 118.2 0.9 121.4 0.211 0.234
120 2.236 2.973 2.058 2.051 119.0 121.1 2.3 119.2 0.239 0.291
125.2 2.221 3.040 2.065 2.054 116.6 123.5 3.4 115.1 0.355 0.362
135 2.257 3.166 2.079 2.069 109.5 130.7 1.8 106.0 0.833 0.480
142 2.266 3.289 2.094 2.076 105.9 139.3 -6.7 101.4 1.428 0.624

a Results atRe(X̃1A1) above those atRe(Ã1A′′). b Rmex aboveRx20, Rx44, the points on a surface of conical intersection reached using the damped
crossing search (see text) fromRp20 andRp44, respectively.Rx20 aboveRx44. Number in parentheses at right hand side labels the entry in Table 2.
c Multiplied by 100.

gτ
IJ(R) ) (cI(Rx) - cJ(Rx))

†∂H(R)
∂τ

(cI(Rx) + cJ(Rx)) (2a)

hτ
IJ(R) ) cI(Rx)

†∂H(R)
∂τ

cJ(Rx) (2b)
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geometrical parameters optimized to minimize Ex(Rx[â]). Table
1 and Figure 2 reportRx[â] and Ex(Rx[â]). The results are quite
illuminating. For 2.8< R(C-C) < 3.0 and 110° < ∠CCO <
120°, nearRmex,equivalent results are obtained withâ ) R(C-
C) and â ) ∠CCO. [The difference of 0.014(0.013) eV at
∠CCO ) 112°( 120°) is attributed to convergence issues.]
However, significant differences are evident for 2.8> R(C-
C) orR(C-C) > ∼3.2. From Figure 2, it is seen that the optimal
solutions for â ) R(C-C) have a much smaller∠CCO
dependence immediately outside this region than those mandated
in ∠CCO when∠CCO is the parameter. Hence, the solutions
for R(C-C) > 3.0 andR(C-C) < 2.8 diverge from those with
∠CCO as the parameter. For∠CCO significantly less than 108°,
or 120° < ∠CCO < 130°, the ∠CCO parameterized curve is
clearly following a local minimum.

For R(C-C) < 2.8 or ∠CCO > 120°, the molecule is
nonplanar. See Table 1. In this regard, note that our results at
Rx[â], for â ) R(C-C) ) 3.2(3.21), with R(C-O) )
2.220(2.225),∠CCO ) 126.5°(125°), ∠HCC ) 115.7°(118°)
andEx(Rx[â]) - Ex(Rmex) ) 0.384(0.370) eV are in good accord
with those of ref 7 given parenthetically. Agreement deteriorates
somewhat forâ ) R(C-C) ) 2.65(2.65), withR(C-O) )
2.279(2.338),∠CCO) 110.0°(107°), ∠HCC) 119.7°(119.5°),
andEx(Rx[â]) - Ex(Rmex) ) 0.375(0.41) eV. These differences
reflect the fact that our result forR(C-C) ) 2.65 has no spatial
symmetry, a situation apparently not considered in ref 7.

ComparingRmex andRe(Ã1A′′) with Re(X̃1A1), it is seen that
leaving the Franck-Condon region on S1, Re(Ã1A′′) lies “ahead
of” Rmex. For noncoplanarRx, one of R(C-C) or ∠CCO is
closer to its value atRe(X̃1A1), the Franck-Condon region
value, than toRe(Ã1A′′). Thus, these noncoplanarRx may
provide alternative, direct paths to the seam of conical intersec-
tion. This point is addressed below.

C. Characterizing the Conical Intersection Region.The
propensity for a nonadiabatic transition depends on the energies
and nonadiabatic couplings in the vicinity of the conical
intersection. As noted in the Introduction, determination of these
quantities, to which we now turn, is the key issue in this work.
The mathematical basis of this presentation is summarized in
the Appendix.

The characterization can be provided in either the adiabatic
or an approximate diabatic basis. Since the derivative coupling,
or its residual in the approximate diabatic basis, is a nine-
dimensional vector, tabulation of the electronic structure data
can be quite complicated. The fact that the derivative coupling
is singular in the adiabatic basis at the conical intersection would
appear to be a further complicating factor. The opposite turns
out to be the case since the singular part of the derivative
coupling is all that is required for all but the most precise
treatments. The adiabatic energies and the singular part of the
derivative coupling can be described analytically, in terms of a
set of characteristic parameters,gIJ(Rx), hIJ(Rx), andsIJ(Rx) ≡
(gI(Rx) + gJ(Rx))/2 for each conical intersection point,Rx.8 Here
gτ

I (Rx) ) cI(Rx)†(∂H(Rx)/∂τ)cI(Rx), τ ) 1 - Nint. The appendix
tabulates the characteristic parameters for representative points
on the seam.

The above observations concerning the derivative couplings
are reflected in the adiabatic-to-diabatic states transformation

Near Rx, Φ(R), determined from either the characteristic
parameters or the matrix elements of a component of the electric
dipole moment operator, rigorously removes the singularity in
the derivative coupling.30,10

At eachRx, the vectorsgIJ andhIJ define theg-h(Rx) plane.
Taking Rx as the origin, define two Cartesian axes in the
g-h(Rx) plane byx̂ ) hIJ(Rx)/||hIJ(Rx)||, ŷ ) gIJ(Rx)⊥/|gIJ(Rx)⊥|
wheregIJ(Rx)⊥ ) gIJ(Rx) - (x̂‚gIJ(Rx))x̂, which in turn define
polar coordinates (F, θ), by x ) F cosθ andy ) F sin θ. The
importance of theg-h(Rx) plane is, as noted in the Appendix,
that near a conical intersection the derivative coupling with
respectθ is the only singular coupling. Thus, it is the preeminent
mode for inducing a nonadiabatic transition. The remainingNint

- 1 directions are largely ignorable, as they are comparatively
ineffective in inducing nonadiabatic transitions.

A g-h plane is illustrated in Figure 3, which presents for

Figure 2. ∠CCO[â] and Ex(Rx[â]) plotted vsR(C-C)[â], with â )
∠CCO (solid line, open markers) and withâ ) R(C-C) (dashed line,
filled markers).

Figure 3. h, g⊥, andz3 for Rx20.

(ΨI
d(r ;R)

ΨJ
d(r ;R) ) ) (cosΦ -sin Φ

sin Φ cosΦ )(ΨI(r ;R)
ΨJ(r ;R) ) (3)
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theRx denotedRx20 in Table 1, thex̂ andŷ spanningg-h(Rx20),
and a vectorz3, one of the seven independent vectors perpen-
dicular tog-h(Rx20). The significance ofz3 is discussed below.
Consistent with the previous discussion,gIJ(Rx)⊥ has (largely)
a′′ symmetry and represents a twisting of the C-C moiety out
of the molecular plane, whilehIJ(Rx) preservesCs symmetry
and represents a twisting of the C-C moiety in the molecular
plane.

Figure 4 reports the essential aspects of our characterization
of the adiabatic and diabatic states and their interconversion
focusing on, as typical,CF(Rx20) F ) 0.05, the circle in the
g-h(Rx20) plane with radius 0.05 centered atRx20. Figure 4a
reports the computed, adiabatic energies,EK, K ) 11A and 21A,
and singular part of the derivative coupling (1/F)fθ (the
superscriptsIJ are suppressed here and below) and compares
them with the perturbative results,EI

p1 andf θ
p1 , requiring only

the characteristic parameters,8 and the higher order estimate
f θ

p2. See eqs A1 and A3 in the Appendix. The agreement
betweenEI andEI

p1 and betweenfθ and f θ
p1 is quite good and

improves forfθ and fθ
p2. However, determination of the higher

order estimatef θ
p2 requires data in the vicinity of, not just at,

the conical intersection.
The data in Figure 4a exhibitCs symmetry centered around

θ ∼ 67°. At this coplanar configuration,∂/∂θ has a′′ symmetry
andfθ is minimized but not zero. The largest derivative couplings
occur for theC1 structures symmetrically placed aroundθ ∼
67°. These results are in contradistinction to the frequent
assumption that in this region the largest coupling is due to a
pure a′′ mode.7 In any case, at least one a′′ degree for freedom
needs to be incorporated into a realistic description of this
process.

Figure 4b reportsfF and fz3, the largest of thefzi. The key
point in Figure 4b is the uniformly small values of these
couplings despite the proximity toRx. In fact, from the ordinate
scale, the minimum value of (1/F)fθ is far larger than any of
these couplings. Note that as required by symmetry,fF(θ ∼ 67°)
) 0. Interestingly,z3 is largely an a′′ mode, serving to confirm/
illustrate the preceding symmetry analysis which permitted only
one a′′ mode to contribute to the singular derivative coupling,
despite the fact that the states in question are of1A′ and 1A′′
symmetry atRx. The good agreement between thefθ and f θ

p1

and small size of the remaining derivative couplings demon-
strates that as a practical matter thederiVatiVe couplings need
not be computed in theVicinity of a conical intersection point
proVided the characteristic parameters are known.

The analysis in the next three figures is central to this work
since it considers the diabatic basis determined from the matrix
elements molecular property operator.31 Figure 4c begins the
analysis reportingµIJ

x ≡ 〈ΨI(r ;R)|µ̂x(r )ΨJ(r ;R)〉r, whereµ̂x(r )
is thex component of the electronic part of the dipole moment
operator and compares it with the corresponding perturbative
result µIJ

x(p). See eq A9. Also reported in that figure areΦ(p1)

andΦµx, theΦ determined from the characteristic parameters
using eq A6 and fromµIJ

x using eq A8, respectively. Since

the agreement betweenΦ(p) andΦµx (see also Figure 4e below)
illustrates the formal result that the transformation to diabatic
states generated byΦµx removes the singular part of the
derivative coupling,32,10

Because of the ease with whichΦµx is determined away from
a conical intersection, it is a popular means of obtaining diabatic
states. The general result

which differs somewhat from previous assertions,33 is therefore
quite important since it guarantees the desired behavior ofΦµx

at the conical intersection.
Parts d and e of Figure 4 continue the analysis of the diabatic

basis determined byΦµx. Figure 4d considers the energy and
dipole moment in the diabatic basis, reportingHIJ

d (R) ≡
〈ΨI

d(r ;R)|H(r ;R)ΨJ
d(r ;R)〉r andµIJ

xd ≡ 〈ΨI
d(r ;R)|µ̂x(r )ΨJ

d(r ;R)〉r.
Note that whileµIJ

xd is approximately constant,HIJ
d (R) exhibit a

cos(θ + σIJ) dependence. Further insight into these results is
obtained from Figure 4e, which reportsEI(R), fθ, f θ

(p1), and
HIJ

d (R) . Note the good agreement betweenfθ and f θ
(p1) despite

the large grid size, 30°. Note too thatEI(R) andH11
d (R) agree

except wherefθ is large, that is, forθ ∼ -22° and 157°. In
those regions, the roles ofH11

d (R) andH22
d (R) switch, owing to

the avoided intersection of the adiabatic curves. Parts d and e
of Figure 4 illustrate the formal result (see Appendix) that, as
for the derivative couplings,the adiabatic-to-diabatic states
transformation and the associated energetics in theVicinity of
the conical intersection are obtained using only the character-
istic parameters and the matrix elements of a property operator
at the conical intersection.

Finally note from Table 1 that although|tIJ(Rx[∠CCO])|
decreases with decreasing∠CCO, no intersecting seams, at
reasonable energies, are indicated.

D. Motion on the 21A′ Potential Energy Surface.Following
the initial excitation, S0 f S1, the system evolves on the 21A
potential energy surface until it makes the nonadiabatic transition
onto the 11A potential energy surface. While bothE21A(Rmex)
andE21A(Re(Ã1A′′)) are exoergic relative to the initial excitation,
the barrier(s) on the 21A potential energy surface may make
one or both of these regions inaccessible. To address this point,
the following series of calculations, which is also useful in
determining the geometric parameters essential for the descrip-
tion of this process, was performed. Starting at∼Re(X̃1A1), a
gradient directed path,Rpisthe path obtained by following the
(scaled) energy gradientgIswas followed on the 21A potential
energy surface. See parts a and b of Figure 5. The oscillations
in, for example,R(C2-H) are the result of the scaling of the
gradient and do not, in this work, affect the conclusions. From
selected points on the path,Rpi, i ) 20 and 44, a search was
performed for a point on the 11A-21A seam of conical
intersection,Rxi, with the energy minimization implicit in the
algorithm18 heavily damped. The goal of this procedure is to
locate a “nearby” point of conical intersection without having
to map large portions of the intersection seam. TheRxi , i ) 20
and 44, obtained in this manner are reported in Table 1. Linear
synchronous transit paths betweenRpi andRxj were computed.
A second gradient-directed path chosen to initially sample
noncoplanar structures was determined. See parts c and d of
Figure 5. Finally note that the “location” of the “vertical”
excitation onto S1 may depend on the photon energy so that
this analysis is no substitute for a careful treatment of the nuclear
dynamics.

From parts a and b of Figure 5 and Table 1, its seen that the
gradient directed path on S1 starting fromRe(X̃1A1) leads to
Re(Ã1A′′), rather than to the seam of conical intersection. This
result is rationalized by noting thatRx20 andRx44 are quite similar
and differ little fromRmex. For theseRxi, R(C-C) is ∼ 0.2a0

∂
∂θΦµx

98
Ff0

fθ

f θ
(p) ≡ ∂

∂θΦ(p)98
Ff0

fθ

∂
∂θΦµx

98
Ff0

fθ
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Figure 4. For Rx20, F ) 0.1 (a)E11A (open circles),E21A (open squares), (1/F)fθ (open triangles), compared withE11
(p1)A (filled circles), (1/F)f θ

p1

(filled triangles), (1/F)f θ
p2 (filled diamonds); (b)fF (open circles, solid line) andfz3 (open squares, dashed line) compared with the results of a

perturbative fit (filled markers); (c)µIJ
x (filled circles) andΦµx (filled squares), compared with the analogous results based on the perturbation

theory using the characteristic parameters,µIJ
x(p) andΦµx(p) (open markers); (d)HIJ

d , IJ ) 11 (open circles), 22 (open triangles), 12 (open squares);
andµIJ

xd
, IJ ) 11 (filled circles), 22 (filled triangles), 12 (filled squares); (e)E11A (open circles),E21A (open squares),fθ (open triangles),f θ

p1 (filled
triangles),HIJ

d , IJ ) 11 (filled circles), 22 (filled squares), 12 (×).
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greater and∠CCO is∼10° smaller than forRe(Ã1A′) so that
Re(Ã1A′) lies “ahead of” Rxi on the gradient-directed path.
However, motion in directions perpendicular to this path may
access the conical intersection seam prior to reachingRe(Ã1A′).
In this regard, Figure 6 considers linear synchronous transit
paths, constructed in Cartesian coordinates, plotted as a function
of ∠CCO, fromRp20 andRp∞ ) Re(Ã1A′′) respectively toRx20.
These results establish the existence of a barrierless path, from
p20 or p∞, to x20.

From parts c and d Figure, it is seen that the non-coplanar
gradient directed path, which was effectively started with a
dihedral∠H1CCO of∼67°, also leads toRe(Ã1A′′). This result
can be attributed to the affinity of the 21A potential energy
surface for coplanarity evidenced in Figure 5c.

Figures 5a-5d confirm the importance ofR(C-C) and
∠CCO for nuclear motion S1. While the paths on S1 leading

from the Franck-Condon region,∼ Re(X̃1A1) to Re(Ã1A′′) are
quite reasonable, alternative results were possible. In an
analogous treatment of the first excited state of NH2OH the
gradient directed path lead directly to the seam of conical
intersection.34

E. Motion on the 11A potential energy surface following
internal conversion.On the upper surface, the conical intersec-
tion acts as a funnel, drawing the molecule toward its vertex.
However, on the lower surface, it has the opposite effect,
directing the molecule to potentially distinct regions of coor-
dinate space. This point is addressed in Figure 7 and Figure 8.
Figure 7 illustrates the energetics and (1/F)fθ and (1/F)f θ

(p1) on
CF(Rx20) for F ) 0.25. Note that here the agreement between
(1/F)fθ and (1/F)f θ

(p1) is less satisfactory than in Figure 4a, as
expected owing to the larger radius. From this circle, three

Figure 5. Gradient-directed path on the 21A potential energy surface fromRe(X̃1A1) to Re(Ã1A′′). Shown in (a) areE21A (open squares),R(C-C)
(open triangles), andR(C-O) (open circles) and in (b) areR(C2-H1) (open triangle),∠C2C1O (open circle), and∠HC2H (open diamond). Forx20

andx44 on the seam of conical intersection, the values ofE21A (filled squares),R(C-C) (filled triangles),R(C-O) (filled circle), R(C2-H1) (filled
triangle), ∠CCO (filled circle), and∠HC2H (filled diamond). For the noncoplanar path shown are in (c)E21A (open squares),∠C2C1O (open
triangles), and∠H1C2C1O (open diamonds) and in (d)R(C-C) (open triangles) andR(C-O) (open circles).
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distinct points were chosen as the origin of gradient directed
paths,q1 which corresponds to a maximum in the derivative
coupling and is as discussed earlier a no-symmetry nuclear
configuration, andq2 andq3 which correspond to high- and low-
energy points. While no substitute for a careful dynamical
treatment, this analysis serves to identify potentially important
aspects of the local topology of the lower potential energy
surface.

From Figure 8, it is seen that from pointsq1-q3 the system
evolves on S0 to the region ofRe(X̃1A1). As previously, the
oscillations observed in the bond distances do not affect these
conclusions.

F. Mechanistic Implications. The preceding analysis sug-
gests two possible mechanisms for the internal conversion. In
the first case, motion perpendicular to the gradient directed path
transports the system to the region of the conical intersection
at which point internal conversion occurs. Alternatively, the

system evolves on S1 to Re(Ã1A′′), forming an intermediate
complex which then ultimately internally converts via the seam
of conical intersection. Three coordinates are essential to
describe the internal conversionR(C-C), ∠CCO, and an a′′
mode likez3 at Rx20.

Following internal conversion onto S0, the situation may
resemble that found in the standard intermediate complex
model.35,36 The ground state minimum of ketene permits the
molecule to repeatedly encounter the S0-T1 surface of intersec-
tion,7 leading to dissociation to3CH2 + 1CO.

To determine how the excited wave packet flux is partitioned
among these possibilities, a full treatment of the dyamics is
required.

IV. Summary and Conclusions

The mechanism of S1(1A′′) f S0(1A′) internal conversion in
ketene, facilitated by the 11A-21A seam of conical intersection,
was considered. Exploiting recent formal and computational
advances in the characterization of conical intersections, this
work presents a detailed but compact representation of this seam
of conical intersection. This analysis provides the basis for the
determination of a coupled diabatic states representation of the
portions of the 11A and 21A states relevant to the intersystem
crossing, a work currently in progress, or it can be used to refine
other representations to these potential energy surfaces.

Energy-minimized projections of the seam of conical inter-
section with eitherR(C-C) or ∠CCO held constant were
determined. ForR(C-C) g 2.8a0 ,which includesRmex the
minimum energy point on the S1-S0 seam of conical intersec-
tion, the energy-minimized seam hasCs symmetry with all atoms
coplanar. However, forR(C-C) < 2.80, deviations from
coplanarity exist.

It is the immediate vicinity of the conical intersection seam,
the key region for inducing a nonadiabatic transition, that is
the focus of this work. A compact representation of the energies
and the largest part of the derivative couplings is efficiently
determined from the characteristic parameters. In particular, by
using the characteristic parameters, one can identify the two
modes, one a′′ and one a′ mode when the molecule hasCs

Figure 6. Linear synchronous transit paths toRx20 from (a) Rp20 and
(b) Re(Ã1A′′). Direction of motion indicated by arrow at the top of
each figure.

Figure 7. For C0.25(Rx20), E11A (open circles),E21A (open squares), (1/
F)fθ (open triangles), (1/F)f θ

p1, (filled triangles). Also indicated areq1,θ

) 150°, q2,θ ) -90°, andq3,θ ) 60°.
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symmetry, that yield the singular part of the derivative couplings;
determine the local energetics; and obtain a transformation to
diabatic states that rigorously removes the singularity in the
derivative coupling. In the past, the vibronic structure of
moderate sized molecules including furan, pyrrole, thiopene,12

and pyrazine11 has been treated with the effects of conical
intersections described using ab initio electronic structure data.
While a description of these complicated vibronic processes was
highly successful, the electronic structure treatments required
calculation of the wave functions at many points in the
immediate vicinity of the conical intersection. The techniques
employed in this work, which require information only at the
conical intersection, provide significantly enhanced capabilites
to incorporate reliable ab initiio data into such treatments37 of
vibronic effects in molecules.

The existence of barriers separating key regions of nuclear
coordinate space is a matter of considerable importance. A
qualitative representation of the potential energy surface topol-
ogy for S0 and S1, in regions relevant to the internal conversion,
was obtained by following gradient directed paths, that is, paths
generated by following the (scaled) energy gradient in a stepwise
manner. Using this procedure, barrierless paths were identified
on S1 from the Franck-Condon region of the S0 f S1 excitation,
leading toRe(Ã1A′′) andRmex. These results demonstrate that
the seam of conical intersection is accessible following excitation
from S0. Following internal conversion onto S0 nearRmex, the
gradient directed paths lead toRe(X̃1A1).

Related questions arise in the photodissociation of isovalent
HNCO,

which also has been the object of both theoretical and
experimental investigations.38,39 In future work, a similar
analyisis of the internal conversion will be performed for this
system.

Appendix

The energies and derivative couplings nearRx, a point of
conical intersection of statesI andJ, can be concisely expressed
in terms of the characteristic parameters8 gIJ(Rx), hIJ(Rx), and
sIJ(Rx) ≡ (gJ(Rx) + gI(Rx))/2 (see eq 2 in the text). NearRx, it
is convenient to use the generalized cylindrical polar coordinates
F, θ, andzi with F andθ defined in section IIIB and the unit
vectorsẑi spanning the space of dimension 3N - 8 orthogonal
to theg-h(Rx) plane. In this work, theẑi are defined in terms
of an atom centered cartesian coordinate basis.

i. Energies. In this coordinate system, through first order
displacements (δR) from Rx

where- corresponds toI, + corresponds toJ,

Figure 8. Gradient directed paths from (a)q1, (b) q2, and (c)q3 on the
11A potential energy surface, leading toRe(X̃1A′). Shown areE11A, (open
squares),R(C-C) (open triangles), andR(C-O) (open circles), and in
inset are∠CCO (open circle) and∠HCH )open diamond).

HNCO(S0 ) X1A′) + hν f HNCO(S1 ) 1A′′) f

HNCO(S0) f H + NCO(X2Π) (4a)

HNCO(S0 ) X1A′) + hν f HNCO(S1 ) 1A′′) f

HNCO(Τ1 ) 3A′′) f HN(X3Σ-) + CO(X1Σ+) (4b)

E((R) ≈ E(
(p1) ≡ EI(Rx) + sIJ(Rx)

†‚δR ( Fq(θ) (A1)

q(θ)2 ) hx
2 cos2 θ + (gx cosθ + gy sin θ)2 ≡ h2 cos2 θ +

g2 sin2(θ + â) (A2a)

cosλ(θ) ) [h/q(θ)] cosθ
sin λ(θ) ) [g/q(θ)] sin (θ + â) (A2b)
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lw ) lIJ(Rx)‚ŵ for w ) x, y, z and lIJ ) gIJ, hIJ, sIJ. From eqs
A1 and A2, we have the important result that theg-h(Rx) plane
contains all the linear part of the energy difference,E+(R) -
E-(R).

ii. Derivative Couplings and Diabatic States.NearRx, the
leading terms in a perturbative expansion offJI(R) are40,8

where

Kz ) 2, KF ) 3,

and (w,n,l,k) ) (z,1,1,0) and (z,2,0,1) and (F, 1,2,0), (F, 2,0,2),
and (F, 3,1,1).

At Rx, only (1/F)f θ
IJ is singular so that the singular part of

the derivative coupling can be treated analytically. Equations
A3 and A5 enable compact expressions for the nonsingular
components of the derivative coupling atRx to be obtained by
fitting f w

IJ along a small loop surrounding that point.41

NearRx, the transformation angle (Φ) to a diabatic basis (eq
3 in text) is approximated byΦ(p)(R) with

TABLE 2: Characteristic Parameters for Points on the Seam of Conical Intersection

R h 2g s

x y z x y z x y z x y z

(1) (116.2, 2.90557)a

0.5219 2.1853 0.0087 -0.0004 0.0001 0.0096 -0.0360 0.0062 -0.0004 -0.0378 0.0065 0.0001
-2.8335 -0.6450 -0.0022 -0.0006 0.0002 0.0287 -0.0524 0.0212 -0.0015 -0.0553 0.0225 0.0000

0.0000 0.0000 0.0000 0.0012 -0.0002 -0.0195 0.1040 -0.0231 0.0008 0.1096 -0.0242 -0.0002
-4.2020 0.8857 0.0014 -0.0001 0.0000 -0.0147 -0.0102 -0.0027 0.0008 -0.0107 -0.0029 0.0000
-3.4698 -2.5911 -0.0001 -0.0001 0.0000 -0.0041 -0.0054 -0.0017 0.0003 -0.0057 -0.0018 0.0001

µ11 ) -1.056 15,µ12 ) 0.024 00,µ22 ) -0.074 61

(2) (119.2, 2.9549)
-1.7501 1.3952 0.0942 0.0026 0.0036 0.0102 0.0198 0.0254-0.0056 -0.0194 -0.0269 0.0014
-0.4699 -2.9236 -0.0249 0.0055 0.0044 0.0294 0.0409 0.0379-0.0118 -0.0599 -0.0566 0.0001

0.0000 0.0000 0.0000 -0.0076 -0.0095 -0.0210 -0.0581 -0.0808 0.0109 0.0730 0.0912 -0.0023
1.3525 -3.8703 0.0052 -0.0002 0.0004 -0.0030 -0.0014 0.0056 0.0001 0.0104 0.0088 0.0011

-2.3059 -3.8710 0.0144 -0.0003 0.0012 -0.0155 -0.0011 0.0118 0.0063 -0.0041 -.0166 -0.0003

µ11 ) 0.123 00,µ12 ) -0.001 64,µ22 ) 0.047 09

(3) (109.0, 2.60)
0.1835 2.2149 0.8258 0.0083 -0.0020 -0.0092 -0.0538 -0.0129 -0.0135 -0.0672 -0.0083 0.0050

-2.5024 -0.5661 -0.1212 0.0183 -0.0044 -0.0069 -0.0404 0.0301 -0.0331 0.0463 0.0643 0.0023
0.0000 0.0000 0.3000 -0.0306 0.0050 0.0115 0.0988 -0.0240 0.0223 0.0331 -0.0599 -0.0215

-3.8643 0.9513 -0.4026 0.0019 0.0019 0.0080 -0.0053 0.0044 0.0140 -0.0088 0.0005 -0.0022
-3.2564 -2.3600 0.5451 0.0021 -0.0005 -0.0034 0.0007 0.0025 0.0102 -0.0034 0.0035 0.0165

µ11 ) -0.710 93,µ12 ) -0.421 74,µ22 ) -0.421 41

(4) (112.0, 2.80)
0.3716 2.2292 0.3166 0.0028 0.0006 0.0070-0.0343 0.0039 -0.0010 -0.0485 0.0051 -0.0036

-2.7193 -0.6056 0.0193 0.0006 -0.0008 0.0257 -0.0515 0.0190 -0.0016 -0.0314 0.0356 -0.0054
0.0000 0.0000 0.3000 -0.0056 0.0012 -0.0158 0.0988 -0.0199 0.0062 0.0982 -0.0369 0.0092

-4.0797 0.9222 -0.1907 0.0017 -0.0007 -0.0122 -0.0077 -0.0012 -0.0035 -0.0110 -0.0016 -0.0013
-3.4357 -2.5280 0.0992 0.0005 -0.0002 -0.0047 -0.0052 -0.0017 -0.0001 -0.0073 -0.0022 0.0011

µ11 ) -1.037 98,µ12 ) -0.020 28,µ22 ) -0.106 59

(5) (120.0,3.00)
0.6451 2.1297 -0.0219 0.0055 -0.0018 0.0112 -0.0349 0.0096 0.0080 -0.0285 0.0090 0.0017

-2.9204 -0.6839 -0.0423 0.0079 -0.0043 0.0296 -0.0487 0.0215 0.0185 -0.0728 0.0107 0.0025
0.0000 0.0000 -0.1000 -0.0152 0.0047 -0.0213 0.1017 -0.0260 -0.0166 0.1158 -0.0151 -0.0047

-4.2673 0.8590 0.0606 0.0011 0.0011 -0.0158 -0.0121 -0.0035 -0.0084 -0.0096 -0.0031 0.0001
-3.5058 -2.6408 -0.0759 0.0006 0.0003 -0.0037 -0.0059 -0.0016 -0.0016 -0.0048 -0.0014 0.0004

µ11 ) -1.050 62,µ12 ) -0.120 90,µ22 ) -0.067 52

(6) (129.4,3.40)
0.9419 1.9807 -0.0555 -0.0044 0.0172 0.0134 -0.0141 0.0508 -0.0156 -0.0029 0.0115 0.0005

-3.2984 -0.8219 -0.0287 0.0004 0.0100 0.0306 -0.0028 0.0331 -0.0414 -0.0875 -0.0145 0.0021
0.0000 0.0000 -0.1000 0.0142 -0.0246 -0.0240 0.0430 -0.0733 0.0280 0.0966 0.0049 -0.0028

-4.5299 0.8030 0.0702 -0.0069 -0.0021 -0.0157 -0.0175 -0.0086 0.0226 -0.0041 -0.0016 0.0001
-3.6814 -2.8165 -0.0932 -0.0033 -0.0005 -0.0043 -0.0087 -0.0020 0.0064 -0.0021 -0.0003 0.0001

µ11 ) -0.743 545 28,µ12 ) 0.278 137 19,µ22 ) 0.03929390

a (∠CCO,R(C-C)).

dλ
dθ

)
ghsin(â + π/2)

q2(θ)
(A4)

mw(θ) ) ∑
i)1

Kw

[ai
wpi

aw(θ) + bi
wpi

bw(θ)] ) q(θ)f w
JI w ) z or F

(A5a)

pn
aw ) cosl θ sink θ sin λ(θ) pn

bw ) cosl θ sink θ cosλ(θ)

(A5b)

f θ
JI(R) = [1/2

d

dθ
λ(θ)] + [F

2

d

dθ(mF(θ)

q(θ) ) +

∑
i

zi

2

d

dθ(mzi(θ)

qθ )] ≡ f θ
(p1),JI(R) + f θ

(p2),JI(R) ≡ f θ
(p),JI(R)

(A3a)

f F
JI(R) = mF(θ)/(2q(θ)) ≡ f F

(p),JI(R) (A3b)

f zi
JI(R) = mzi(θ)/(2q(θ)) ≡ f zi

(p),JI(R) (A3c)
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The derivative coupling in the diabatic basis

is negligible near the conical intersection.41

iii. Diabatic States and Molecular Properties.Since only
theg-h plane, rather than the individualgIJ andhIJ, is uniquely
defined,29 the angleΦ is arbitrary up to a constant offset. This
complicates the synchronization of theΦ at differentRx. This
problem can be avoided using a transformation to diabatic states
that is uniquely defined and is equally effective in removing
the singular part of the derivative coupling atRx. This is
generated byΦ ) ΦA (ref 32 ) where

with AIJ(R) ) 〈ΨI(r ;R)|A(r )ΨJ(r ;R)〉r and∆AIJ(R) ≡ (AII(R)
- AJJ(R))/2. HereA(r ) is any Hermitian operator for which
∆AIJ(R) andAIJ(R) do not simultaneously vanish atRx.32

NearRx, explicit computation ofA(R) and, hence, of the wave
functions, can be avoided sinceA(R) is well approximated by32

whereσ are the Pauli matrices. TheΦ obtained fromA(p) is
denotedΦA,(p).

Thus, knowledge of the characteristic parameters and the
relevant operator matrix elements at the conical intersection is
sufficient to determine the energies, the largest part of the
derivative coupling and the diabatic states near the conical
intersection. Table 2 reports the characteristic parameters and
matrix elements ofµx(r ) for selectedRx in Table 1.
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-Φ(p)(R) ) λ(θ)/2 + [FmF(θ)/(2q(θ)) +

∑
i

zimzi(θ)/q(θ)] ≡ -Φ(p1)(R) - [Φ(p2)(R)] (A6)

f τ
d,IJ ) f τ

IJ - ∂Φ(p)

∂τ
≡ f τ

IJ - f τ
(p),IJ (A7)

tan 2ΦA(R) )
Aij(R)

∆AIJ(R)
(A8)

A(p)(θ) ) (AII + AJJ)/2I + σx(∆AIJ sin λ + AIJ cosλ) +
σz(∆AIJ cosλ - AIJ sin λ) (A9)
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